

STRATEGIES FOR WATER

Risk Assessment and Digitalization of Static Components at Hydro Plants: a Massive Application to Penstocks and Waterways

Luigi Papetti

STATIC COMPONENTS – THE UGLY DUCKLING OF HYDRO DIGITALIZATION

<u>Definition</u>: software and hardware to improve operation and maintenance of HPPs

- 1. What can we do when Big Data are not available?
- 2. Does anyone have a vague idea of what are the main causes of failure of a hydroelectric power plant?
- 3. Are failures due to problems with static components or problems with rotating ones prevailing?
- 4. Are there, or do we need, deterministic models to feed digital models of hydroelectric plants?
- 5. How far can we go with the digitalization of small fleets or single small hydroelectric plants?

STATIC COMPONENTS – THE UGLY DUCKLING OF HYDRO DIGITALIZATION

Hydroelectric plant: a set of components functionally connected to transform the water resource into energy

STATIC COMPONENTS – THE UGLY DUCKLING OF HYDRO DIGITALIZATION

Old method

50% success

No control on rivets and penstock shell in 70 years

No need for complex systems: common sense is enough

New method

$$\frac{\partial u_i^+}{\partial t^+} + u_j^+ \frac{\partial u_i^+}{\partial x_j^+} + Re^{-1} = -\frac{\partial p^+}{\partial x_i^+} + Re^{-1} \frac{\partial^2 u_i^+}{\partial x_j^+ \partial x_j^+}$$
$$\sum_{i=1}^N \sum_{j=1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

50% failure

THE METHOD

- Identifies the ways in which a product can fail (failure modes)
- Estimates the risk associated to a specific cause
- Prioritize the failure mode (and actions)

Severity

X

Occurrence

X

Detection

=

RPN

RPN VALUE	RISK LEVEL	ACTIONS
up to12	Negligible	None
from 13 to 25	Low	To be considered on a case by case basis
from 26 to 50	Medium	Action aimed to reduce the risk
over 50	High	Urgent action aimed to reduce the risk

REAL CASES

October'19

17 PLANTS, 17 STRUCTURES:

• 17 penstocks

October'20

25 PLANTS, 58 STRUCTURES:

- 35 penstocks,
- 15 tunnels,
- 8 channels.

December'20

30 PLANTS, 130 STRUCTURES:

- 58 penstocks,
- 52 tunnels,
- 21 channels.

FAILURE MODES & CAUSES

PENSTOCKS						
Failure mode	Cause					
Pipe hole	Stray current					
Partial failure	Human error					
	Damage or pull-out of joint					
	Failure of connections					
	Failure of constraints					
	Wear of constraints					
	Failure of pipe shell					
	Wear of pipe shell					
Total failure	Impacts and other environmental factors					
	Attacks and vandalism					

TUNNELS							
Failure mode	Cause						
Partial failure	Instability and/or decay of the rock mass structural conditions						
	Presence of active/inactive tectonic lines and seismology						
	Critical hydrogeological conditions						
	Absence or damage of the lining						
	Failure of the watertight doors in the manholes						
	Presence of irrigation valves						
	Human error						
Total failure	Slopes instability						
	Critical sections						
	Attacks and vandalism						

Cause
Flood hazard
Unsuitable freeboard
Seismology
Structural failure of the work
Human error
Slopes instability
Attacks and vandalism

General Overview Penstocks

Tunnels

Channels

Global risk levels of all the assessed works

Cause: Failure of pipe shell						
Range of Occurrence	No.	Range of Detection	No.	Range of Severity	No.	
0-1	3	0-1	5	0-1	4	
1-2	5	1-2	6	1-2	49	
2-3	13	2-3	1	2-3	2	
3-4	34	3-4	2	3-4	0	
		4-5	41	4-5	0	

Cause: Critical hydrogeological conditions					
Range of Occurrence	No.	Range of Detection	No.	Range of Severity	No.
0-1	0	0-1	0	0-1	2
1-2	2	1-2	14	1-2	40
2-3	3	2-3	28	2-3	0
3-4	37	3-4	0	3-4	0
		4-5	0	4-5	0

Tunnels

Channels

Causes of highest RPN values

Cause: Structural failure of the component					
Range of Occurrence	No.	Range of Detection	No.	Range of Severity	No.
0-1	0	0-1	1	0-1	10
1-2	1	1-2	0	1-2	19
2-3	0	2-3	6	2-3	0
3-4	28	3-4	0	3-4	0
		4-5	22	4-5	0

CRITICAL REVIEW

Positive reduction of the time

Objective, consistent

P DECISION-MAKING tool

CONCLUSIONS

- 1. The ability of a hydroelectric plant to produce energy or supply power depends on the efficiency and reliability of <u>all</u> its components
- 2. Static components deserve the same attention than rotating ones
- 3. A preliminary analysis (e.g. FMEA) of the functional links between the different components of a HPP can help in prioritizing the (expensive) monitoring efforts of digitalization
- Sharing data about plants failures in the hydro community could help the creation of statistically significant conclusions
- 5. Site-specificity of hydropower requires a great preliminary effort in adapting general methods to peculiar situations

STRATEGIES FOR WATER

THANK YOU FOR YOUR ATTENTION

Luigi Papetti