WHEN POLICY IS QUESTIONABLY PUT IN PRACTICE MISLEADING APPLICATION OF DESKTOP FORMULAS FOR RESERVED FLOW CALCULATION AN ITALIAN CASE STUDY

Luigi Papetti Studio Frosio - Brescia Italy

CONCLUSIONS

• Large scale planning conflicts with site specific situations and penalise them

• It's evident the necessity for the regulator of having a desktop formula for planning reasons, but....

 Desktop formulas can hardly describe specific site conditions

MORE CONCLUSIONS

• It's wrong in principle to plan water resource management on the basis of regionalisation algorythms: it's quite better no planning at all, but in this way the power of bureaucratic apparatus disappears

DEFINITIVE CONCLUSIONS

 Small hydro plants owners must be positive and propose a voluntary approach to reserved flow determination based on experimental data. In most cases the game is worth the candle and the economics of the plant can bear the expenses of a site specific study

SHORT LIST

- Regional Law nr. 25/1982
- National Law nr. 183/1989
- National Law nr. 102/1990
- Act 6/1992 Po River Basin Authority
- National Decree nr. 275/1993
- National Law nr. 36/1994
- Regional Act nr. 7/2604/2000
- National Decree nr. 152/1993
- Act 7/2002 Po River Basin Authority
- Regional Water Protection Plan 2005

•

SHORT FORMULAS

 $RF = (-2.00 \cdot 10^{-5} \text{ S} + 0.14) \cdot (0,004204856 \cdot \text{H} + 0,02302933 \cdot \text{P}) \cdot \text{S} \cdot \text{M} \cdot \text{Z} \cdot \text{A} \cdot \text{T}$

$$RF = \left(0.052 \cdot S^{0.068232} \cdot q_{\text{mean}}^{0.234733} + \frac{0.4689}{q_{\text{mean}}}\right) \cdot q_{\text{mean}} \cdot S \cdot M \cdot \max(N, F, Q) \cdot A \cdot T$$

$$RF = 0.1 \cdot \left\{ \frac{1}{T} \cdot \int_{0}^{T} \varepsilon + (\lambda - \varepsilon) \left[-\ln \left(\frac{9}{365} \right) \right]^{\frac{1}{\beta}} d\theta \right\} \cdot S \cdot M \cdot Z \cdot A \cdot T$$

$$E = m \cdot c^2$$

THE PLANT

•	nominal average flow rate	0,530	m^3/s
•	rated discharge	1,20	m^3/s
•	gross head	71,90	m
•	nominal power output	373,5	kW
•	installed capacity	655	kW
•	annual production	3	GWh
•	length of the depleted reach	3,4	km
•	catchment area	100,5	km ²

1993 – FIRST OBLIGATION

- Based on the catchment area (~ 4 1/s/km²)
- Reserved flow = 393 1/s!!!
- Expected energy loss: > 60 %!!

Reserved flow never released

2003 – THE GREAT CHANCHE

- Reserved flow ~ 10% of Q_{mean}
- Q_{mean} derived from energy production
- Proposed reserved flow = 55 1/s

2004 – THE BUREAU ANSWER

- "Safety factor" against owner dishonesty = 2
- Official reasons (not better specified): the river has
- 1. "environmental value"
- 2. "hydrological and hydro-geological peculiarities"
- New reserved flow obligation = 55.2 = 110 l/s

• Loss of annual income ~ 40.000 €

2005 – AGAINST DESKTOP FOMULAS

- Direct flow rate measurements at different distances downstream of the weir
- Hydro-biological evaluation of the status of the river with different values of reserved flow released (including no reserved flow)

• $Q_{formula} = 3.15 \text{ m}^3/\text{s}$

• $Q_{real} = 0.69 \text{ m}^3/\text{s}$

• "Safety factor" = 4,5

Just downstream the weir

• No RF

• 128 l/s RF

Effect of tributaries (low flow period)

No reserved flow

Effect of tributaries (low flow period)

No reserved flow

PICTURES MISLEADING?

Let figures talk

Abiotic parameters measured downstream of the weir

		No RF	RF = 110 l/s	Difference
Velocity	[m/s]	0,36	0,56	-0,20
Depth	[m]	0,04	0,07	-0,03
Wetted area	$[m^2]$	0,18	0,35	-0,17
Wetted perimeter	[m]	5,07	5,14	-0,07

PICTURES MISLEADING?

Let figures talk

Abiotic parameters at the end of the depleted reach

		No RF	RF = 110 l/s	Difference
Velocity	[m/s]	0,61	0,67	-0,06
Depth	[m]	0,08	0,09	-0,01
Wetted area	$[m^2]$	0,80	0,92	-0,12
Wetted	[m]			
perimeter		10,16	10,18	-0,02

PICTURES MISLEADING?

Let figures talk

No Reserved Flow

EBI	Class	Description	Color	Status
8	II	Environment with some evidence of pollution effect	Green	Good

WHAT ABOUT MONEY?

- Cost of the study: ~ 10.000 €
- Annual loss of energy (RF 55 vs. 110 l/s): 270.000 kWh
- Annual loss of income (RF 55 vs. 110 l/s):
 - > 40.000 €

THEEND